MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA PA F/6 9/2
COMPILATION OF NONPROCEDURAL SPECIFICATIONS INTO COMPUTER PROGR==ETC(U)
APR 81 N S PRYWES, A PNUELI N0001i-76-c-0!1

y

ADA10065 1

UNIVERSITY of PENNSYLVANIA

The Moore School of Electrical Engineering

s
-3
\g

PHILADELPHIA. PENNSYLVANIA {9104 —f*

UNIVERSITY of PENNSYLVANIA

PHILADELPHIA 19104

The Moore School of Electrical Engineering D2

DEePARTMENT OF COMPUTER AND INFonMATloN SCIENCE

LJ?

- ~

Technlcal e Irt
Rep L,

& CONPILATTON 033 WOVPROCFDURAL

e !

/

SPVCI ICATIONS INTO COMPUme

| PROGRAMS,
X =

by

. N.S. Prywes &&& A. /Pnue¢1

| Appiihemms § 1

Prepared For
Information Systems Program
Cffice of Naval Rnsearch

Uncder Contragt

Automatic Program

i
;
o
[

4

. NBOO14-76-C-pu15

Generation Project

b om0

Section

Section

Section

Section

Section

Sec*ion

-1

TABLE OF CONTENTS

Introduction.......

The Model Specification Language.........

Data Statements...

Assertion Statements...

.............

Representation of a Specification by an Array Graph....

Error Detection and Correction of a Specification......

Introduction......

Ambiguityeeevesee.s

Incompleteness....

Dimension Prcpagation...

Filling Subscripts
Range Propagation.

Flowchart Design..

Conclusicn...... .

* s 0 0 0 0

L A L R IR

a8 0
........
. . .
.. ..

. .

. . .
. o ¢ ..

. . .
.. v e e 00 e
.............
.............
e s e s s . .
oo e s e .

FIGURE

FIGURE

FIGURE

- ii -
LIST OF FIGURES
Major Syntactic Components of Data Statement
MODEL Specification For Producing a Sales Report

MODEL Specification For Testing the Primeness of
an Integer

Array Graph of the Specification IMN Figure 2
Array Graph For the Specification of Figure 3
Flowchart Generated For the Example In Figure 2

Flowchart Generated For the Example In Figure 3

13

15

TABLE
TABLE
TABLE
TABLE

TABLE

Edge Types
Attributes
Attributes
Attributes

Attributes
Associated

- iii -

LIST OF TABLES

of Node Structure
0f An Entry In Local Subscript
Of An Edge s « pD.

¢f An Entry In Subscript List
With An Edge

33

Ly

L5

45

M diaien i

yorw

COMPILATION OF NONPRGCTZEDURAL SPECIFICATIONS
INTC COMIUTER PROGRAMS*

N.S. Prywes
Department of Corputer and Information Ccilence, Moore Scnool,
“niversisy of Pennsylvania, Philadelphia, Pa. 16104

A. Pruell
Welzmann Institute, Rehovot , Israel

ABSTRACT

" The article describes the compilation of a proegram
specification written in the Very High Level nonprocedural
MODEL language into an object (PL/ I or Cobol) procedural
language program. Jonvrocedural programming languages
are descriptive and devoid of procedural controls. They
are therefore easier to use and require less programming
sx11ls than procedural languages. PFirst, the MCDEL lan-
guage 1s briefly vresented and illustrated. An important
vhase 1in the comvllation process is the reovresentation
of the specification by a dependency graph denoted as

array gravh which expresses the interdependency between

statements, Two classes of algorithms which utilize this
graph representatlion continue the compilation vprocess.

The first class checks various completeness, nor—ambigulty

nd consisztency aspects of the specification. Upon de~

¥Research suprorted by the Information Sys<tems Proaoram,
Office of Naval Research, Contract Nc, N0001L4-76-C-041%,

tecting any faults the system attempts some automatic
correcting measures which are reported to the user.
Alternately when no feasible corrections are possible it
reports an error and sclicits a user modification.ﬂﬂThe
second class of algorithms produces a general design of

an object program in a language independent form, finally
P1/I or Cobol zode is generared, based cn the general
design.

\ The algorithms are described informally. A number of
less important algorithms are omitted, including the)
algorithms used to generate PL/I or Cobol code based on
the intermediate design. A complete documentation of

the system is available in the references.

Index terms: Nonprocedural languages, Very High

5

Level Languages, Program Specifica-
tions, Compilers and Generators,

Automatic Program Generation, Data-

T T Y RS R T T T T T T

flow Languages.

Compu*ting Reviews Categories: 4.12 and 4.22,

;“Tv‘ﬂ!w*”“z—“

TP O

T T Segn RISy ST

r
|
*?

I. INTRODUCTION

This paper describes the process of compiling a oro-
gram specification, written in the very high level non-
procedural MODEL language, into a program in a conven-
ticnal high level procedural language, such as PL/I or
Cobol.

Nonprocedural languages have been proposed for over
a decade as more natural, more reliable and easier to use
than procedural languages (Tessler and Enea, 1968;
Leavenworth and Sammet, 1972; Ashcroft and Wadge, 1977).

The advantages in use of the MODEL nonprocedural language

and 1ts processor have been discussed in a previous paver
(Prywes, Pnueli, and Shastry, 1979). Some of %the consider-
ations reported there are repeated here very briefly. A
nonprocedural language has no need for the procedural

and control constructs of a conventional orocedural

language and the order of presentation of the language !
statements has no significance., The user.of a nonprocedural i
language concentrates only on describing data, independently

of the medium of the data (i1.e., memory, data base or any

other external storage), and on composing equations that

define output variables 1n terms of input variables,

Consequently, the user concentrates on expressing his pro-

gram in a way which 1s most natural for the given prob-

lem, and 1s not distracted by the need to design

h)

efficient representations and algorithms. Within a

reasonable framework the task of design for efficiency is
automatically undertaken by the system. A nonvrocedurzal
specification is therefore much sherter than the =squiva-
lent procedural program. The computer proficiency re-
quired of the user 1s also reduced through the elimin-
ation of the procedural design and considerations of
efficiency. The aggregate of descriptive statements is
unllike a procedural program; therefore 1t is inaporopri-
ate to refer to is as a "program." Instead, we use the

word specification. The programs produced by the MODEL

processor are more reliable., The task of debugging is
carried out on a much higher level, verifying only the
correctness of the specifications, and hence 1s much
simpler than debugging a orccedural program.

Previous developments of processors for nonprocedural
languages have taken the interpretation route. While this
approach can ensure flexiblility and generallty of the non-
procedural language, the resulting system usually suffers
a decrease 1n efficiency when executed on a conventlional
machine. Alsc, the dizencstic capability of an interpreter
is usually pcorer in that very little preliminary analysis
1s attempted. Therefore, 1n our development of the MODEL non-
procedural language and processor, we have taken the compll-
ation route, translating a specification into a con=

ventional high level language., Also we have ineor- °

porated the cavabllity fer-handline data bases and in-

ihieatianiile

vy

put/output required for realistic appvlications. Due to the
nature of the nonprocedural language, and the need to sched-
ule program events, the orocess of compilation in this case
is unlike that of conventional procedural languages.
Several of the more lmportant problem areas in the design
o the MCDEL processor are briefly described below.

A specification in the MODEL language consists of two

types of statements: data description statements which

describe the structure and attributes of wvariables, and
2quations defining some variables (the dependent variables
cf the equations) in terms of other variables (the in-
devendent variables of the equations). Some of the vari-
ables are designated as source variables and some as target
variables. The role of the specification is to describe the
transormation between source and target values. Tyvically,
both source and target variables are lccated Iin external
files.

Consider now the basic problems of fransliating such
a specification into a conventional program:

Unordered nature of the specification: The order of

the statements in the speci?

} e

carti

(@)

n not

§
]
7]

iznificant.
Consequently, 1t 1s necessary to analyze the svecification
globally o deftermine all the dependenci=2s between vari-
ables and equations which imply a pvartial ordering of the

events in the program. Thus, an equation for defining a

A\ §

W

(oY

variable can be calculated only when all the 1independent
variables, i.e. variables appearing on the right hand
slde of an equation, are already defined. Consegquently
the calculation of an egquation should be dreceded by the
calculations of all the equations defining the indepen-
dent wariables of this egquation. Similarly, the in-
structions for reading the value of a variatle which re-

sides on secondary storage should precede any equation

for which this variable is an independent variable. The array

graph representation of the specification shows +this
orecedence order between statements., This graph is also
analyzed in order to detect circular devendencies, and then
used to synthesize the program by translating statements

in an order consistent with the precedence constraints.

Handling input/output: The user descripntion of data
is independent of the medium of the da*a and whether i*ts
representation is internal (in core) or external (secondary
stvorage). It 13 necessary then to determine, based on file
descristions or the dependencies between wvariables and
2quations, whether the data 1s on an input/output device or

in main memory, and 1if necessars schedule the assocl

ced

W

Analysis o2Ff rege4itive equations and loct design:

Since the language allows ssructured variables which may bte

tree~structured or arravs, an esuation for such a wvariable

defines an aggregate of values. In the case ¢f an equa-

ticn deflning an array variable, The translation calls

by

or repetitive calculation of the equation for different
values of the subscripts which explicitly or implicitly
subscript the eaquation. This implies that the translation
willl enclose the equation within repetitive loops, whic!
mizht be nested if the array is of multiple dimensions.

In constructing the locps we must perform a deeper anal-

ysis of the interdependency between wvariables. In the

'

resence of array variables we may have =2lements of one
array devendent on elements of another array in a com~-
clicated manner, as well as the possibility that one el-

ement of an array may depend on another element of the

same array. These considerations require that the el-

.

ements of the arrays be computed in a certaln order, and

hence impose constraints on the loop design.

Checks and diagnostics: : In contrast to the situa-

tion with oroccedural programming languages, most errors
in a nonprocedural language stem not from coding errors

)

cut from mathematical incompletenesses or inconsisten-—

O

ies. Detected errors must be communicated to the user

in strictly nonprocedural terms (i.e, without referencing
program design considerations). The compilation oro-

cess incorporates methods which resolve the vroblems

" B3 dealld Mt & . taaihal
i hfh it dand

automatically and report the corrections to the user, as an
aid 1n explaining the respective detected oroblems. This
methodology of program checking and communication with

the user goes beycnd today's compilers of procedural
languages,

Zfficient use of memory: As discussed sarlier, in

specifying the data description statements, the user
chooses the description which is most natural and
appropriate for the problem,., This choice

does not necessarily lead to the most efficient data

representation. It is up to the processor to map the

[}

cneceptual structure ontc a physical memory layocut. In
this mapping it 1is necessary to analyze the possibility
of sraring of storage by different structures or even
by different parts of the same structures. This 1is
particularly important for large external data bases,
where 1t 1s frequently mandatory to bring into memory
at most one cr a few records at a time,

The discussion in this paper follows the flow of con-
trol in the MODEL system. The input to the system is
2 nrogram specificaticn in the MCDEL language. The
syntax and semantics are briefly described in Section 2
together with two examples, which are used through the

paper to i1llustrate the compilation process. The

[P

v

language processor has five major phases:

1) Syntax analysis

2) Representation of the specification and the de-
pendencies between its elements by an array graph. This is
described in Section 3. An array graph 1s a compact repre-
sentation of a large structured graph and is used here to
represent the dependencies. The basic algorithms of
Graph Theory can, under appropriate restrictions, be
carried out on the array graph as well.

3) Consistency checking and correction of the speci-
fication. This is described in Section 4. The algorithms
in this phase detect missing definitions, resolve ambiguities
in naming of variables and verify consistency of dimen-
sionality, range and subscripting. Many of the inter-
actions with the user, utilizing nonprocedural terms,
occur in this phase,

4) Generation of a flow chart for the program., The
general design of a program is described in Section 5.
These algorithms sequence the instructions implied by the
data structures and equations. Iterations are designed to
reduce memory and time costs, Program optimization is
based on the notion of maximizing the scope of the iter-
ations, particularly those that incorporate input or output
operations.,.

-

5) The generation of PL/I or Cobol code is based on

10

the design generated in phase 4.

The first and last phases, which we consider less
novel, have been omitted from our discussizn. The present
paper is based on an operaticnal version of the .10DEL
system which is described in detail in a reference (MODEL
Program Generation: System and Programming Documentation,

1980). Ongoing research on several improvements is described

in Section 5.

-

11

2. THE MODEL SPECIFICATION LANGUAGE

A specification in the MODEL language consists of an
unordered set of statements. The statements in the lan-
guage are of two types: data description statements and
equations which we call assertions. The daca description
statements describe the structure and attributes of the
varlables participating in the specification. The asser-
tions define the values of some variables in term of
other variables. The wvarilables appearing in a specifica-
tion are designated as source variables or target vari-
ables in header statements. The header statements are not
important to the discussion here and are omitted in the
followingl. The values cf the source variables are con-
sidered to be available on external input files. Target
varlables are to be produced on external output or update
flles, Target variables may alternately be designated as
interim, to indicate that they need not be retained as
ocutput. The two subsections below describe the syntax of
data and assertion statements respectively. Two examples
are used to 1llustrate the composition of these two types
of statements.

2.1 Data Statements

Data in a MODEL specification may be highly struc-

tured. The description of the data structure is tree-

1 Several features that provide additional ease have been
omitted. For a more complete description of the lan-
guage refer to MODEL II User Manual, 1978.

[>

12

oriented, similar to FL/1 or Cobol. The node at the root
of the data structure tree typically represents a file.

A file may be composed of substructures, each of which
may be further composed of substructures, and so on. A
substructure is referred tc as the‘parent o it 3 com=-

ponent substructures. The latter are referred to as

descendents, A data structure is visuallized as a tree

where substructures form nodes with branches leading to
lower level components. The syntactic definition of data
statements 1s shown in Figure 1. The < data name > is
the name of a node in the tree. The < node *type > in-
dicates a level in the tree. A FILE node type may only
appear at the root of the tree. A terminal tree node is
denoted as FIELD node type. An intermedlate node in the
tree which 1s also the unit of transfer of data between
input/output and memory is of RECORD node type, as in
?L/T or Cobol. A GROUP node tyve 1s any other inter-
mediate node in a tree.

The optlornal < flle arguments > describe the computer

media of the data2. They are unimportant to the dis-~

2 Flle arguments are necessary for generating a Cobol
Program, For a PL/1 program the medium may be specified
in the JCL statements.

—

s

13

< data statement > : < data name > IS < node type > (<arguments>)

[[]

< node type > : = FIE | GR[oulP | REC[ORD] | Fl[IE]LD?

< arguments > : < file arguments > | < group/record

argarents > | < field argurents >

< group/record argurents > : = < immediate descendent name >
[(< nuber of repetitions>)]
[, < immediate descendent name >
[(< number of repetitions >)]1*

The square brackets ([X]) denote optionality; when

followed by an asterisk ([X]*) they mean zero or more
repetitions.

+ The node type may be preceded by the key word INT[ERIM]
when the respective-data.strueture is target data but
is not needed on an output medium.

Figure 1 Major Syntactic Components ¢f Data Statement

cussion below and will be omitted in the following.

The number of repetlitions of a descendant structure
is included as an argument in the statement describing
the parent. If the descendant occurs only once, then the
< number of repetitions > is omitted. If the number
of repetitions varles, then the minimum and maximum
bounds may be specified. Also, unknown number of re-
petitions may be specified by an asterisk (¥) in place of
a repetition count3. The definition of a variable number]
of repetitions 1s further discussed below,

The field arguments are: data type, size and scale,

with the same meanings these attributes have in PL/1.

They are omitted in the following.

The example in Figure 2 illustrates a business appli-
cation, which characteristically includes input/output.
It consists of processing source sale documents to pro-
duce a monthly sales report. The data statements are in
lines dl to dl4., Line dl describes the IN sale source
data. IN IS FILE (INGRP(*)) means that the file IN con-

sists of an unspecified sequence of repetitions of struc-

3 In specifying an asterisk, the user imolies to the sys-
tem a memory allocation scheme in which only a few ele-
ments are retained in memory. Thils requires primarily
limiting subscript expressions to the form I - X, for the
respective dimension. This point is discussed further in Sec-
tion 2.2. We are currently develoolng a new version which
weuld perform this task automatically (see Section 6).

1

Gia L e oot D

/%
dl:
d2:
d3:
45
Vi,
36 :
47
4a8:
d9:

/*

d1l0:
dll:
dl2:
dl3:
dly:.

/%
al:
az2:
/%

a3:

al:
a5:

DATA DESCRIPTION OF IN FILE ¥/

INM IS FILE(INGRP(#¥*))
INGRP IS GRP(INREC(¥))
INREC IS REC(ITEM#,QUANT)
ITEM# IS FIELD
QUANT IS FIELD

DATA DESCRIPTION OF ITEM FILE ¥/

ITEM IS FILE(ITEMREC)
ITEMREC IS REC(ITEM#,PRICE)
ITEM# 1S FIELD
PRICE IS FIEL

*

o
)

DATA DESCRIPTION OF OUT FILE ¥/

OUT IS FILE(OUTREC(¥))
OUTREC IS REC(ITEM#,TOTAL,COST)
ITEM# IS FIELD
TOTAL IS FISELD
COST IS FIELD

ASSERTIONS FOR DATA PARAMETERS */

IF END.INREC(FOR_EACH.INREC)
THEN POINTER. ITEMREC = IN.ITEM#(FOR_EACH.INREC)
END.INREC = (IN.ITEM#=NEXT,IN,ITEM#

ASSERTIONS FOR OUT FILE DATA */
CUT.ITEM# = ITEM.ITEM#

TOTAL = SUM(QUANT(FOR_EACH.INREC), FOR_EACH.INREC)
COST = PRICE ¥*TOTAL

Keywords are underlined.

Plgure 2 MCDEL Specificatlon for Producing a Sales Report

A\ B

16

tures named INGRP. In line d2, INGRP IS GRP (INREC(*))
means similarly that INGRP 1s a group consisting of an
unspecified number of INREC structures. Line d3 shows
that INREC is a RECCRD containing information on quantity,
QUANT, of the item sold, identified by ITEM#. The PRICE
of each 1ltem is in another source file ITEM (lines 46 to
d9). The target data 1s a summarized sales reovort named
OUT (lines 410 to dl4). Each record in 2UT contains the
ITEM#, TOTAL, and COST., TOTAL 1is the sum of all the
quantities (QUANT) of an 1ltem of a specific valued ITEM#,
that have been sold. COST is the product PRICE¥*TOTAL.
This example is further explalined in connecticn with later
discussion of the assertions,.

Although data are pictured in MODEL (as in PL/1 and
Cobol) as tree structures, it will be more convenient for'
the discussilon here to refer to data as arrays. There is
a direct correspondence between the tree and array views
of a data structure. For instance, specifying a <number
of repetitions> means that the data structure repeats,
constituting a vector. Generally, a structure may be
viewed as a multidimensional array, where < number of
repetitions > specifications of own or predecessor nodes
in the data tree glve the ranges of respective dimensions,
Thus for instance, ITEM# and QUANT in the IN file are

viewed as two dimensional arrays. The first, more

5 A

-

v

17

significant dimension corresponds to repetitions of INGRP
and the second dimension corresponds to repetitions of
INREC. Therefore, we refer in the followlng to the

< number of repetitions > of a node as a range sveci-

fication, and also as the range of the dimension., View-

ing the data as arrays allows referring %o a specific
instance of the data as an element of an array which can
be identified by the appropriate indices for each dimen-
sion. TFor instance ITEM#(nl,n2) denotes the ITEM# in the
n2 th INREC of the nl th INGRP. Element indices are

denocted by free subscript varlables that may assume integer

values in the range of the respective dimension.

The range of a dimension may depend on the values of
higher order subscripts. Therefore the range of a dimen-
sion of an array may not have the same value for all higher
order dimension indices. Such an array is not rectangular

and is referred to as a jagged edge arrav. Tor example, IMNREC

N

has two dimensions with variéble ranges associated with the
repetitlions ¢f INGRP and INREC. The number of INREC in-
stances variles from one instance of the parent INGRP to
another. INREC may be +Vviewed as a two dimensional

Jagged edge array, with a row corresponding to each in-
stance of INGRP and the INREC instances corresponding tc
elements of the respective rows. Since the number of INREC

instances varies from row to row (l.e. from one INGRP group

F——-—-—-—————'m'”:“

13

to another), the resulting matrix is not rectangular, but
jagged edge.

Referring to an element through subscripting, and defining
a variable range by use of an assertion are further discussed
below in cennection with the use of assertions.

The example in Flgure 3 defines testing the primeness
of an integer N, and if prime, the derivation of one divisor
(DIV) of N.% The IN source file (lines dl to d43) contains a
single record with the variable N, and the OUT target file
{lines d4 to d7)contains a single record with N and DIV,

The algorithm evaluates progressively the products

5f two integers for the purpose of testing eauality to N.

The product of the two integers is represented then by J
i (1ines d8 to d10). Note that in line 410 of Figure 3, J
5 i3 stated to be INTERIM, namely it is target data but the
user Is not interested in retaining J. It also means that
T

J is needed for ease in specifying the algorithm for test-

ing primeness but is not part of the desired result.

I Tt 1Is similar to the testing of primeness example used
in a description of the LUCID nonprocedural language
(Asheroft and Wadge, 1977). The chcice of the same ex~
ample should help the interested reader to compare LUCID
and MODEL

dl:
da:
d3:

a4
d5:
a6 .
ar:

al:

a2:

a3:

al .

as:

19

/% DESCRIPTION OF IN FILE ¥/

/% DESCRIPTION OF OUT FILE ¥/

OUT IS FILE(OUTREC)
OUTREC IS REC(N,DIV)
N I3 FIELD
DIV IS FIELD

/% DESCRIPTION OF INTERIM DATA */
INT IS GRP(I(%*))

I LS GRP(J(¥))
J IS INTERIM FIELD

/* ASSERTIONS FOR DEFINING END.I AND END.J ¥/
= (J =z W)

/* ASSERTION FOR DEFINING J */

IF SUB1 > 1
THEN J(SUB2, SUB1)=J(SUB2,SUB1-1)+SUB2+1
ELSE J(SUB2, SUB1)=(SUB2+1)#*%¥2

~

* ASSERTICNS FOR DEFINING VARIABLES IN QUT FILE ¥/

IF END.I(SUB2) »
(7(SUB2,3UB1)=!}

‘THEN DIV = SUBZ+¢
ZLSE DIV = 'PRIME!

QUT.N = IN.N

Flgure 3: MODEL Specification For Testing
The Primeness of An Integer

)

AT

A\ &

20

Wwhile the data statements describe the exlstence
and structure of data to be operated upon, the descripticn
of +the transformations applied to the data is glven by
the assertions. Rather than give detailed procedural
instructions on ster-by-ster execution, the user cf MODEL

identifies relationships between the variables, from which
3

f—4

d
the processor deduces the actual execution sequences. These
relationships are called assertions in MODEL. The build-
ing bilocks for assertions IiInclude conventional arithmetic
and pboolesan expressions and more structured operations

such as IF=THEN-ZLSE. This section describes the syntax

and szemantics of assertions with the aid of the two ex-

O
Hh

amples in Figures 2 and 3. The focus is on the properties

special variables that define parameters of darta,

subserists and functions,
The syntax used for assertions in this vaper is the
i
same as *hat of computation statements in PL/1. The lan-

guage allows =2xplicit egquality relations of the form:
< variable > = < expression >
The variable on the left hand side, the dependent variable

2f the assertion, 1s defined by the expression cn the

right nand side. The indevendent variables fcor this asser-

tion are the variables pvarticipating in the defining ex-

.
i
i
i
\

vpression on the right hand side. An 2xpression is tull¢
out of variables and constants to which are applied basic
operators and functions. PL/1 conventlions for constants,
variables and boolean and arithmetic operators are used
in composing expressions. These include the
IF-THEN-ELSE operator whose syntax is:
IF < condition > THEN < variable > = <expression_l»>
ELSE < variable > = <expressicn_2>,
meaning that 1f <condition> evaluates to TRUE, then
< expression_l > defines the value of the variable, other-
wise < expression_2 > is used. An assertion defines only
one varlable and therefore the same variliable name must be
used following the "THEN and ELSE keywords.5
An assertion statement, though similar in syntax to
an assignment statement in procedural languages, should
be regarded by the user quite differently. The assertion
meaning 1s identical to the mathematical notlon of egquliva-
lsnce vetween the two sides of the equal s3ign. Namely
it 1s an equation. This aspect is basic to the difference

between procedural and nonprocedural languages.

5 An alternative Algol-like syntax: < vzriable »>= IF

< condition > THEN < expression_1l > ELSE < expression_2 >,
is also avallable. This syntax shows more cliearly the
equation quality of an assertion.

22

Because of the nonorocedural nature of MODEL, each vari-

able name may denote only one value. Also the "nistor-
ical"™ values of data, namely those that would not be need-
ed further in a computation must be explicitly repre-

sented by symbolic names. In contrast, procedural pro-

o angs <\ o oy el S T T R T TR e

gramming languages allow assigning differing values to

the same variable and "historical" values may be discarded
if not further needed. For instance,an assignment
statement within a loop: X=X+1 would make no sense as an
equation, In MODEL ift would be necessary to name

each value of X separately. Assume that these

values constitute a vector, with N elements. An element

is denoted by subscripting: X(I). I is the subscript
variable which can take the value of an Integer in the range
of 1 to N.6 The MODEL equivalent of the above assignment
statement 1s the assertion: X(I)=X(I-1)+1.

SBoth the dependent and the independent variables
should be subscripted by a list of subscript expressions
corresponding to the dimensions of the variables as spe-

cified in the data description. An& integer valued ex-

U

6 The more general case 1s where with each dimension we
assoclate a lower 1imit 24, an upper limit uy and an
increment cy. The node X(Ij, I,e.I;) then mey have the form
(275U 525,U5,C00us ee U). The moPe gereral case s handled by

Shastry 51939).

!!L ‘ T - A

23

B e

pression can be used as a subscript expression for the
variables. The general syntax for subscripted vari-
ablas 1s:

< element of array > ::= < field name >

|
%

(<subscript expression>[,<subscript expression>]#*’
The subscript expressions must be ordered according tc the
dimensions. Free subscript variables, as well as other
variables and constants and arithmetic operations may be
used in composing subscript expressions.
A free subscript variable may be global to an entire
specification or local to an assertion. The same global

subscript name in a number of assertions refers to free

subscript variables of the same range. Global subscript

names use the syntax form of FOR_EACH. <data name>, They
may then have any 1integer value in the range of the

<number of repetitions> associated with the <data name>.

For instance assertion a5 in Flgure 2 can be written using
global subscripts as: COST(FOR_EACH.INGRP)=PRICE(FOR_EACH.
INGRP) *TOTAL(FOR_EACH.INGRP). Use of the same local sub-
script name In different assertions does not imply referring
to free subscript varlables of the same range. Local sub-
script names use the syntax form of S[UB]<n>. Using local

subscripts, assertion 25 of Flgure 2 could be written as

Z0ST(31)=PRICE(S1)*TOTAL(S1), Either representation would

24

be acceptable. The use of local subscripts is easier
in many cases as the user need not consider the ranges
of dimensions of different data structures. The syntax
of a global subscript name is somewhat awkward and a

shorter global subscript name, such as commonly used

-

symbols for subscripts, I,J,K etc, may also be declared.
The syntax for declaring a global subscript name 1s:
<subseriot names>{£§E}SUBSCRIPT (<number of repeti<ions>)
Subscript expressions are classifled into four
types according to use of the following syntactic forms:
1) <free subscript variable>
2) <free subscript variable>-1
3) <free subscript variable>-K, K is integer >1
4) Any form of arithmetic expression except types
l, 2 and 3 above,.
The user 1s advised to give preference to use of subscript
expressions of types 1, 2 and 3, as the version of the
MODEL system reported here analyses the correctness of the
specification and endeavors to obtain efficiency of the
resulting program more thoroughly when these types of
subscript expressions ares usad.
The subscripting of variables 1s a complex task +that
is difficult for many users. Subscripts may be implicit in
cases which do not lead to ambiguity. Allowing omission of

such subscripts eases the composition of assertions.

e —— e ———t—

25

Following are the subscript usages that must be
specified:

1) Subscripts used in subscript expressions of types
2, 3 and 4 (see above).

2) Subscripts of dimensions that are reduced or
added in an assertion (i.e., where an independent variable
has more or less dimensions than the dependent variables).

3) Once a subscript is specified in an assertion
it must be consistently specified with all the variables
in the assertion where the subscript applies.

4) Subscripts on the right of any specified subscripts.

5) Missing local subscripts are assumed inserted in
all variables of an assertion monotonically (i.e., S1,S2...)
from right to left, Subscripts must be specified in
cases where this assumption is not valid.

Subject to these rules, the MODEL system performs
analysis to insert missing subscripts. Thus assertion
a5 in FTigure 2 is stated as COST=PRICE*TOTAL, omitting the
subscripts altogether. Figures 2 and 3 omit some subscripts
(using global subscripts in Figure 2 and local subscripts
in Figure 3). This will be further discussed below.

Of particular interest in the following are the use

of qualified names and function names in assertions.

They are first briefly presented and thereafter further
discussed with the aid of our two examples.

Qualified names may be used in assertions, using a
period (.) to connect individual names (similar to PL/1).
The most common use of a gualified name 1s to eliminate
ambiguity through prefixing a name of a higher level
structure. For instance in the example in Figure 2,
there are three ITEM# variables, in files IN, ITEM,
and OUT. They = are unambiguously referred to in asser-
tions al and a3 as IN,ITEM#, ITEM,ITEM# and CUT.ITEM#
respectively.

Another common use of gualified names is to =liminate
ambiguity in data that are updated. The keywords OLD and

NEW are used then. For instance an assertion NEW.PRICE(J)=

(W)

LZ.PRICE(J)+INCREMENT would update the PRICE in the ITEM
file in Figure 2. An update of a file 1s visualized as
creating a new version of the file, which would add a dimen-

i

"
.

ot

2 the "1le structure. This is difficult to use, and

w
O

S

>
D

of OLD and NEW keywords 1s preferred.
There are narameters of the data structures which 2=-

cend on values of source or target variables. We refer

ot

5> thes2 as data parameter variables. Characteristically,

the

w

e

3

aramet=rs nprovide specifications for sizes of arrays,
lengths of character strings, keys for access to filles, etc.

They Introcduce £o MODEL the flexlbillity of wvariable size or

dynamic structures. The syntax of a data parameter

variable is:
<data parameter variable> ::= <reserved keywords>.<variable>
Data parameter variables may be explicitly defined
by assertions. They may denote entire arrays and be used
with subscript expressions in the same way as other vari-
actles. These keywords are listed below and further

discussed 1in the sequel.

ZND.<data name> denotes whether the named data
element is the last one in the
rangs of a dimension.

ENDFILE.<file name> denotes an end-of=-file marker
of the named file,

POUND. <record name> denotes existence of the record
in an index sequential file that
is accessed through a POINTER
variable (see POINTER below).

LENGTH.,<field name> denotes length of the named field.

NEXT. <field name> denotes a named variable in the
next adjacent record on the me-
dium source data.

POINTER.<record name> denotes value of a key used to
reference a keyed record in an
index sequential file. (The key
name is identified in the FILE
statement.)

SIZZ.<data name> denotes the range of the lowest
order dimension of the reveating
data structure named in the suffi:.

These variables are [INT]ERIM , 1.e,, they are not ocutrut,

out are otherwise considered same as target data. Data

'!!ll"

28

description statements for these variables may btc
provided optionally. If not provided, =ach of these
variables will bve automatically assigned the apvropriate
dimensionality. These variables are further explained

below,

When the range of a dimension is variable, the range
is viewed as denoted by an auxiliary array variable which
may be defined by an assertion. A variable range data
structure X may have 1ts range denoted by a structure
named SIZE.X, of one dimension less than that of X (the
rightmost) and same ranges of the other dimensions. Thus
if X is m dimensional the elements of SIZE.X have the
values of the ranges of the lowest order dimension of X

for each of the higher order dimensions indices. Thus

Iy, the subscript for the m-th dimension of X(Ij....Im.1,
In) must be in the range 1 < I < SIZE.X(Iy...T _1).
consequently 1f the values of the elements of SIZE.X are
not equal, then X is not a rectangular array but a Jjagged
edgze array. The range must be 2 0.

Ancther option for defining the size of structure X
is by an auxiliary boolean array named END.X that has
the same dimensions and ranges as X. A 0 value of an 2lement
of X denotes that it 1s not the last element within the

range of the rightmost dimension, and a 1 denotes that it

is the last element. When END.X 1s used for range speci-

29

flcations then the range must be 2z 1.

For example the ranges associated with INGRP and
INREC in Figure 2 could be denoted by END.INGRP and
ZND.INREC respectively, The termination of the INGRP
structure in file IN can be determined by an end-of-file
marker at the end of file IN. The definition of
END.INGRP is therefore implicit and the user may omi<
defining this variable by an assertion. Alternately,
ENDFILE.IN variable denotes recognition of end-of-file

marker on the file medium, and 1%t could have been used

to define END.INGRP, but as noted above this definition
has been omitted in Figure 2. a2 in Figure 2 defines
END.INREC. This is further explained below.

POINTER. <record name >, defines an access key to
an index sequential or random access file. The [ile
ITEM described in lines d6-d9 of Figure 2 1is an index
sequential file’. POINTER.ITEMREC is a vector with an !
element for each instance of INGRP (the FOR_EACH.INGRP
subscript 1s implicit and has been cmitted in assertion
a;). Let us represent assertion al by: POINTER.ITEMREC(I)=

ZXPR{I). The array of records ITEMREC is considered as

7 The sorting order and fille organization can be optionally
provided by the user in the flle arguments, which have
been omitted in this paper.

S AN &

B s e b o

indexed in the order of the elements of the retrieval keys
POINTER,ITEMREC., Namely, the record retrieved by using
EXPR(I) as a key is considered to be the I-th element in
the array ITEMREC.

Finally, function references can be made to denote an
operand in assertions. The bullt-in functions of 2L/
may be used with the MODEL program generator that produces
°L/1 object programs. There is a subset of the PL/1
bullt-in functions in the version of the system that
oroduces Cobol - object programs. Additional functions may
be coded in the object language and vlaced in the system
function llbrary.
Let us now consider in full the examples in Figures
2 and 3. The specification in Figure 2 describes 2 business
application which processes source sale documents IN to
produce a monthly sales revort QUT. The user may designate
IN as source data and OUT as target data in a sevarate
neader section of the specification. Discussion of a
header section has been omitted in this paper. Alternately,
lack of assertlions defining the variables in IN would imply
that I is a source file, and the existence of defining
assertions implies that QUT is a target file. Lines dl %o
d5 describe the IN file as a two dimensional array. Assume
in this specificaticn that the sales records are sorted by

ITEM#7 so that all the records with the same ITEM# value

31

appear contiguously. Consequently we conveniently view
the file as an array of groups INGRP, each such group

being an array of records with identical ITEM# values.

This grouping is conceptual rather than physical. We need
an assertion which determines the range of INREC in-
stances based con comparison of ITEM# values in consecutive
records., Assertion a2 is respensible for this determination.
v END.I§REC has the same dimensions and ranges as INREC. It
| denotes the last element of INREC. The last INREC record b
. (of an INGRP group) is recognized by the change of the
item number. The ITEM# in a subseguent record is referred
to as NEXT.ITEM#.B
A For each INGRP group we would llke to sum all the i
sale quantities QUANT asscciated with a given item. This

is done in all, The SUM function sums elements along one

dimension of an array. In this case the elements of QUANT

are summed along the second dimension. Note that the sub- i

Ut

cript for the first dimension 1s implicit and has been
omitted. The function SUM is referred to as a reduction

function as the number of its dimensions 1is one less than

h)

the number of dimensions of its argument. We then

3 Note that NEXT.ITEM# may be in the next group and have
an element index 1. Thus, NEXT.ZTEM# is not the same
as ITEM# (FOR_EACH.INGRP, FOR_EACH.INREC+1).

Lo
n

calculate the total ccst of sales for this item

by multiplying TCTAL by PRICE. However, the PRICE in-
formation resides on an auxiliary index sequential file
ITEM . The ITEMREC with the relevant PRICE is referenced
defining the ITEM# field as a key. The fields in an

OUT record are defined in assertions a3-a5.

As noted, the fully subscrirted form of assertions

requires writing dcewn long subscript lists for almost
svery variable. In order to alleviate tThis chore scmewhat
we allow some subscrivts to be omitted in Figure 2. This

m

considerably simplifies the asserticns. The assertions

in lines al to a5, Figure 2, use zlobal subscripts. The

subscript FOR_ZACH.INGRP can be omltted in all assertions.
In al POINTER.ITEMREZ denctes *“he <value of a key that

assoclates an instance of ITEMREC with an instance of INGRP

[n

B
d
O
-
=z
+3
tr
*d
=
3
ta
A
0
tn
Q2
W]

(7]

that has the same value of ITEM well i

9]

45 INGRP are one dimensional with the TOR ZACH.ZIGRP subscrict.
Line al states that the value of the key POINTER.ITEMREC
1s equal to the last element of IN.ITEM#.

The interim variables NEXT,ITEM#,POINTER.ITEMREC and
ZNCL.INREC need not be descrived in the user surplied data
statements, The dimensionality and name of parent nodes
are Implled, and higher level nodes are added to account

foer increased dimensionality. Impllied dimensions are

assumed to be virtual.

A\ B

An assertion 1s referred to as a recurslive assertion

if the dependent variable 1s an element of an array and it
depends, directly, or through a chain of assertions, on
other =slements of the same array. If the dependent
variable element depends on elements in the same array
with Index values that are smaller than the value of the
subscript used in the assertion,then the dependent variable
elements can be evaluated progressively as the value of
the subscript is incremented from 1 to the end of the
range 1in steps of 1. This condition 1s checked, and
if it is not satisfled <then a warning message is issued
and a Gauss-Seidel iterative procedure is generated to evaluate
the dependent array variable elements.

Figure 3 contalins a specification that illustrates
the use of recursive assertions and referring
to "historical" data, discussed previously. The variables
of this specification form three structures. The input
f1le IN, described in statements dl to d3, contains the
integer N which 1is to be tested fcr orimality. The out-
put file OUT constains an output record for printing the
result which consists of a copy of N and a field DIV.
DIV is a divisor if N is divisible (and hence non prime).
If N is prime then DIV contains the alphabetic string

'PRIME', The structure INT contains a table J in which

integer ©products up to N are listed. J is 2 Ja;

ged

()3

vy

34

two dimensional array containing the history of cgroducts.

J 1is an INTERIM FIELD with two virtual dimensions. The
global subscripts of the array J are FOR_ZACH.I and
FOR_ZACH.J.

The jagged matrix J is 1llustrated below for N=15.

FOR_ZACH.J
FOR_EACH.I 1 2 3 4 5 6 7
1 4 6 8 10 12 14 16
2 9 12 15

Note that only the value J{(2,3) = 15 is of interest
for finding DIV = FOR_EACH.J+1=3. The array is Jagged,
i.e. the range of the second dimension depends on the
value of the first dimension subscript.

Since J is a two dimensional variable range array,
END.J(also two virtual dimensions) and END.I (one virtual
dimension) define the respective ranges. Since we are
only interested in products not exceeding N we term-
inate the dimension associated with J when <he
value of N 13 exceeded. This is expressed in asserticn
acz., a3l 1s an example of a recursive ascertion. It

defines J. al and a5 define the variables DIV and N in

rem - et e s o1 me
the 2UT file., The assertions, as stated in Fizure

(W9

, 2lso

T

W

iliustrate use of local subscripts. Following the above

rules, subscripfs can be omitted only in assertion al.

.

g

1}
xl

Gy b 2ol Bid

et PR T

-

- E

1
1

3. BREPRESENTATION OF A SPECIFICATION BY AN ARRAY 3FEAPH

As noted in the previous sections, much 7 =n

\"
|

formation needed for generating a drogram is fmrlii-
in the MODEL specification., It is therefors resa::.
to verform the analysis to make such infarmanizr -
pliclt. 4s a first stev it 1s advisazle 5 recrzzzn-
the specification in a convenient form, based 2n wnizn
implicit information can be derived and enters3
checks be conducted and finally a schedule of cgrogram
execution be derived., The conventional avpovroach <o
this class of prcblems has been t0o use a form of a
directed graph to represent dependencies and other
relations Iinvolved in the computation. Similar %o
Petri Nets (Petri

, 1962: Hol«, 1360) and Data Flow Zrachs

{(Dennis, 13732), ocur use 2f a3 directed zraph is also mair-

3

17 Zor £he modeling T 1ata Zecendencles, Howaver, the
straigsht forward zorrcsch @7 cimztrirtings 2 ograrh in
whizh 23ch zompuszsl-r o7 2 wrrs 2larers 13z renresen-cad
by a nnde Is unzz:carsarl=s, Tiaoe - coomror 1T 2 ements
in an array mIv oot oo e “rllationg
and seccondlv, Toe irrs - AR R |
nuge unmanageat e T . : =

37

represent potential processing steps associlated with
- accessing and evaluating array variables. Thils means
that each data structure and each equation (explicit and

implicit) are represented by a node. This also means that

[{)]

ach statement 1s represented by a node. When a file
statement is designated (implicitly or explicitly) as

both source and target data (where a file is‘updated) then
separate nodes represent the source data and the target
data. There are also nodes for the data parameter
variables,

Each node 1s potentially compound, namely each
represents the instances of the data structure or equation
for all the array elements 1 to N. Information on dimen-
sionality and range must therefore be associated with the
nodes in the array graph. A node that corresponds fto a
data structure has associated with it subscrints that corres-
pond to its dimensions. A node that represents an assertion
(1.e. equation) has associated with it subscripts that cor-
responding to the union of subscripts of the varilables
appearing in the equation. Thus a compound m dimensional
node A represents the elements from A(1,l,...1) to
A<N1’N2"‘Nm) where Nl"'Nm are the ranges of dimensions
1 “o m respectively.

Similarly a directed edge may be compound In that i

represents all the instances of dependencies among the

—

e xS

38

array elsments of the nodes at the ends ¢f the =dge.
These dependencies imply precedence relaticnships in
the execution of the respective implied actions. There
are several types of devendencies or precedences, Tor

example, a Hierarchial (H) orecedsnce refers to the need

to access a source structure before i1t¢s :omponents can be
accessed or, vice versa, the need to evaluate the com-

ponents before a structure 1s stored away. Data dependency(D)

orecedence refers to the need to evaluate the independent
variables of an esquation belore the dependent variable can

be evaluated. Similarily, Data Parameters(?) vrecedence re-

fers to the need to evaluate the data parameters of a
structure (range, length, etc.) before evaluating the
structure, Flve such types of precedence relaticnships
that are represented by directed edges in the array
graph, are described more precisely in Table 1. These
edges are determined based on the analysis ¢f the in-
formation in statements associated with the respective
end nodes., Since each edge may be compound 1t 1s
necessary to associate with 1% information on dimen-
sionality and ranges.

An array graph AG is then a pair (N,E) where N is

a 3et ¢f compound nodes and E is a3 set of compound edges.

The array graoh AG=(N,E) represents an underlying graph

39

BT RO

1) Hierarchical (H): between a data node and its

descendants in the data structure tree. For source data

a node precedes its descendants; the opposite holds for

target data.

2) Data Devendency (D): Dbetween an assertion node

¥,
B

and its variable nodes. The indevendent variacle nodes
precede the assertion node which precedes the dependent

' variable node.

-

3) Data Parameters (P): between a data parameter

; : variable node using keyword prefixes FCUND, END, ENDFILE,

LENGTH, NEXT, POINTER and SIZE and the data node which

et w

(B0

s its subject (named in the suffix). For END, ENDFILE,
SIZE, LENGTH, POINTER and SIZE keywords the data para-
meter node precedes the subject data node and vice versa
for the FOUND and NEXT keywords.

- 4) Medium Order (M): between two sibling data nodes

which are on an external file, reflecting the order of
position of data on the file medium.

[. 5) Virtual (V): Where the range of a dimension is

denoted by an ¥, access to the I-1th element of a virtual

dimension must precede access to the I th element. Thus,

s wherever there 1s a precedence relationshiov of types D
or H between predecessor and successor nodes with a

7irtiial dimenzion, %there 1is 2132 an 213

direction (labsled with %the subscript expression-tyce 2
I-1) Z2r =23ach virtual zutserict used in these nodes,
-~ -— q
Table T Zdge Tuves 1

"F-....'....!...----------u----r-—-H-———--nv-—*ﬁ“**”*“"*""' E |

[40

UG=(N,,E,) which is a conventional directed graph where
i each instance of an element of an array is represented by a

node and each instance of dependency is represented by an

edge. The underlying graph UG is defined in terms of the

array graph AG as follows. The nodes N, of UG are
Ny={ACI;,Tp...I) | 1<I7Npy,1<Ip<N1,,. . .where A(T7,TI;,...1,) <N}
The edges in the underlying graph are between underlying

graph nodes where the corresponding common subscripts have the

same value, Let A+B be an edge E in the array graph AG,

where A and B have ccmmon and different subscripts, Let the

subscripts Ij,...I,, be common to both nodes, while the

subscripts Fq., Fys,...F are exclusive to the A array and

subscripts Gy, Gy,...G;, are exclusive to the array B.

The order of the subscripts of A and the subscripts cf B is

determined in the array graph AG. The underlying graph

edges E, which correspond to the array graph edge A<B are:

Eu={A(approp. ordered I and T subscripts)<«B(approp. ordered
I and G subscripts)

1<F1eNp, » 1PNy, , - e

Note that if there are no subscripts which are common to
both A and B then the edges in the underlying graph are from

avery element of B to every element of A.

40A

Two array graphs for the examples of Figures 2 and 3
are illustrated in Figures 4 and S5, respectively. Each array
data node 1is represented by a dot labelled by the variable
name and by its repetition specification, if it is a repeating
structure. The graphs include nodes added by the system to
reflect the dimensionality of data perameter variables, The
asscrtions are represented by circles labelled by the assertion
line number., Array edges are labelled by the edge type.
However, in order not to clutter the diagrams excessively,
V type edges are shown only in Figure 4, for only one ¢f the
virtual dimensions.

The data structures and assertions are stored by the

;) MODEL processcr in a simulated associative memory that facili-

tates search of a statement by variable names and keywords.
A node directory is created basei on the statements. The

Hierarchical (H) and Medium (M) type edges are created first,

2 followed by the Data Dependency (D).

Array Graph of the Specification In Figure

-~

<

T

T r——"

IN

H
INREC

e e - ’ (%)

e
e o]
m

Figure 5 Array Graph For The Specification Of Figure 3

edges and Data Parameters(P) edges.

Virtual type (V)

edges are constructed during a later analysis phase.

Later analysis may also indicate the need for addi<ional

nodes and edges. Data structures associated with

nodes and edges are constructed at the time that the

edges are created, but the values of some of the variables

in these structures are determined later during the

analysis ohase. These data structures are presented in
Tables 2-5 and will be referenced

sion of the analysis of the array graph and the design of

the corresponding program.

The array graph is represented by three data struc-

tures:

1) A node directory with a unique node number for

each assertion and data (array) variable.

2) A node table - An entry for each nocde consists

further in the discus-

of the attributes assoclated with each node shown in

Table 2 and attrilbutes of the subscripts of the node

shown in Table 3.

3) An edge table - consisting of

assoclated with an edge shown
of the subscripts of the edge
2dge structure constitutes an
lists attributed respectively

successor nodes,

in Table %, and attributes

shown in Table 5.
element in the two

to the predecesscr

the attributes

Tach
edge

and

2

.

3.

[0xY
.

Node number and name

Node type: datal|assertion.

If a node repeats:

3.1
3.2

3.3

Physical|virtual dimension.
Range definition, 1if defined
directly:

|variable(SIZE/END arrays)
[declared (subscript)
|implicit (end of file marker)

Node number of range specifica-

]

tion if defined indirectly.

Apparent number of dimensions(D)

Local subscript list for subscripts associated with the

node (see Table 3); ordered by dimension number (from

left to right)

Sucessor Edges 1list

Predecessor Edges 1list

Table 2: Attributes Of A Node Structure

45

Position (dimension) number in node.

Is dimension reduced? Is there a reduction on that
subsecript (applicable only to assertion nodes)
Subscript form: TFOR EACH.Y|SUB<n»>|declared.

Node number of subscript declaraticn. {(Each subscript
declaration has its own node number)

Node number where range i1s defined directly.

Nesting level (if implemented by a nested loop).

Table 3: Attributes of an Entry in a Lccal Subscriot

List of A Node. (see Table 2, item S5)

Le

1. Edge type H|D|PIM|V

2. Difference in number of dimensions between
predecessor (p) and successor (s) nodes (3).

3. Predecessor node number,

4. Successor node number

5. List cf subscripts associated with the edge
(see Table 5), ordered by position number in

. predecessor node,

Table 4: Attributes of an Edge s <« p.

1. Local subscript position number in predecessor's node.
2, Local subscript position number in successor's node,
3. Subscript expression type: I|I-1|I-K|or other,

(I-subscript, X > 1).

Table 5: Attributes of an Entry in a Subsecript
List Assoclated with an Edge

e

R TR A

‘3

4. ERROR DETECTION AND CORRECTION OF A SPECIFICATION

4,1 Intrcduction

It is to be expected that a newly composed speci-
fication would contain ambiguities, imcompletenesses
and inconsistencies, especially when the composer of th=z
specification 1is not prcficient in mathematics cr o»ro-
gramming. Since the system does not possess knowledege
of the application, the automatic error detection and
correction pnrocesses must depend only on the analysis
0T the inherent logic of the specification.

The program that is to be nroduced may be con-
sidered 2as transforming multi-dimensional data zarrays

into data arrays having %the same or different numbers

3

and ranges of dimensions. This requires compatibilisy
of dimensiocnality and variables subscripting in asser-
tions. 1If errors are found, we can do either of two
things: c¢orrect the specificaﬁion and warn the user,
or, alternately, - report an errcr and solicit a
correction from the user. In either case the ex-
rlanation of the troblem discovered must be presented
in terms of the nonorocedural specification and nct
in the procedugglﬂbermsﬂgf the program that is being

produced. We prefer to maxke corrections whenever

reasonacle and advise the user of such corrections as
this facilitcates explaining the problem that has been

48

detected, We realize that this aporoach is controversial
in that designers of recent language processors frown on
amending programs by default since this contradicts the

noticn of explicitness. In cur case the warnings sent to

RO

the user emphasize and clarify the formalism that is being

.

used.

)
ot
D
(o}
£
'3
Q

Three general types of zsrrors that may be dete

U T e

sometimes cerrected are discussed here. Ampiguities ari

¢4}
(]

from assigning the same name to several data strucsures.
Recognition and correction of data name ambiguisy is dis-

cussed in Section 4.2, Incompletenesses due to missing def-

initions for some of the variables are discussed in Section

M.3.9 Inconsistencies arise when the assertions or defini-

tions contradict themselves or one zancther due “c incompatsi-
ole Zdimensionality, renges, subscripts, or dug %o 2iroular lefni<ions.
Incensistencies can be identified in a three step rrocess.

The first step, dimension provagation, traces the array zrach

in order to determine consistent dimensionality of the nodes.
Conflicts in dimensionality are either resclved or reported as
errors. Dimension oropagation is discussed in Section 4.4,

Section U,5 discusses the insertion of subscripts in assertions

where they nave been omitted. The last step, range orovacstion,

9 Shastry (1373
analrssis <o
defined.

iscusses extension of the compl
S7ing that every element »f 2

identiiles <The rianges I I_Te . .

user has nov Troviied zTe Il 3T - -
correszonding 3Zecli_el ralse ~- -

This 2rocess 3132 le-2:7: = - -

Or MissSIng range 3TeclilIaToir. Fanooe - -
cribed in Sec+ion -.Z., Ti::llzr .

4,2 AmbiIguity
The construcTicn -2 elger Ir-cesli TooT o Tre 3
data <=rees and Traces The Tranihes, e T iTeTen T s IS
in a 3imulated associa<ive memor™, Trim WRlio ItETemel T T
be re+trieved based on a bcolean exTressiisa otorniliTioc T s -
words and data names. Thus, Sor ins=-inze, 1= 13 - L -
retrieve all the statements wi*h <he TILI xevwriri. =< rom
there to create H type =2dges which trace each Zata nierarch
tree, and so on. When there are several data statemen=s
i with the same data name then there would e a3 ccrresgending
; number of candidate edges for each precedence re_3<l:nshi:c
from or to the similarly named ncdes. In 3sserticns =he

ambiguity must be removed by the user by prefixing each

ambiguous variable with the name of the aprropriate ances<tor.

3 The absence of such a prefix results in a correspconding errir

A

. messagae., In data statements the appropriate ancestor i3 Implicitlv
1 based on the order of the compcsition ¢of the stazemen*s - +he

user, When there is more than one statement wi<h the same nanme,

4
t

sy nede statement that precedes it

= B RN

and i3 nearest to it in the order of composition of

stataments 1is selected as the assumed rarent , Thus, for
instance, in ¥igure 2 there are three data statements
with an ITEM#. Following the order of statements 1t is
nossible to determine the parent of esach. Otherwise it
would have been necessary to use gqualified names also
in the data statements.

At the end of construction of H-type edges, any
ambiguously named data which is not linked to a parent,
is assumed redundant and is deleted.

4,3 Incompleteness

Incompleteness 1s the apparent omission of struc-
tures or assertions. If all the data and assertion
arrays are defined then the array graph would be "complete"
in the sense that an edge terminates and an edge originates
at each node, except in the following special cases:
1) Source file statements and assertions that
define wvariables by constants do not have
edges that terminate at these nodes.
2) The nodes that renresent target files do not
have edges that originate at these nodes.
3) 3Some source field ncdes may have no edges that
originate at the nodes. In this case, the

particular source data name is not used in an

assertion to define any other data and 1is

only included for the complete Specificaticn
of the data structure.

If the above completeness criteria are not satis-

ied, an appropriate data description statement or an
assertion may be generated gccording to the following
rules:

1) If the node under consideration represents a
record, group or field of data, and the parent
for that data name has been omitted oy the user,
then a parent data statement is generated. The
array graph 1s also updated %o include the
parent-descendant relationship resulting from *he
generated statement. This allows a user to

omit parent data statements especially in

3

INTERIM data. Thus, for instance, in Figure 3

3

k4
P
+3

it is possible to omlt the statements fo
and J (lines d8 and d9) and equivalent stace-
ments (using different names) would be gen-
2rated by the processor.

2) If the node under consideration represents 2
target data field name, and, if no edge termin-
ates at the node, then an assertion may be
generated as follows: If <here exists 2 scurce

data, with the same name then we assume that

52

this source 1s to be copied into the
identically named target variable. Tor ex-
ample, 1f assertion a5 in Figure 3 was omit=ed,
the assertion OUT.N = IN.N would be automatic-
ally added. All corrections are reported to
the user in warning messages.

4.4 Dimension Propagation

Assertions generally <transform multi-dimensional arrays,
where the dimensionality of the arrays is indicated by the
user through subscripting. However, as noted, some subscripts
may be omitted by the user and are considered implicit.
Furthermore the dimensionality of arrays implied in asserticns
must correspond to the dimensionality of those arrays
specified in the respective data descriptions. If the declared
number of dimensions of the data structure is *oo small
then additional data statements are generated, otherwise
an error message is sent.

The process of evaluating the number of dimensions
of each node 1s performed in two steps. In the first
step each edge is considered locally in order to evaluate
1) the difference (8) between the numbers of dimensions
of 1ts predecessor (p) and successor (s) nodes {see
Table 4, item 2), and 2) an apparent (initial) number

of dimensions (D) of these nodes (see Table 2, item 4).

53

r
N
.
®

This step 1s performed during the construction of

edges of the array graph. The second step checks

£

clared and apvarent dimensicnality of independent and
dependent wvariables of each assertion and iteratively
moditfies the apparent number of dimensions until there is
consistency of dimensionality throughout the array graph
or an error 1s noted.

The evaluation of 6 and D in the first step is as

Tor tyve #H edges:

for source data, if the successor (s) is a receatin
data then 3=1, else §=0;

for target data, 1f the predecessor(p) repeats then
§==1, else §=0.

D for data nodes 1s the number of dimensions as
derived from znalysis of the structure's data descrirzticn.
If the structure is not described, then D=0.

For type D edges (that originate or terminate at

assertion nodes), the evaluation of 8§ and D is based

antirely on the respective assertion as given by the user,

and is inderendent of the dimensionality of 1ts indevendent
and dependent variables as specified in the respvective
data statements,.

Consider a user provided assertion, a, with an in-

dependent variable X and a dependent variable Y.

54

a: Y(Ik,....Il)=function(X(Ib.....Ia,Jm....Jl)).

The I subscripts are distinct from the J subscripts.
{Ig-+..Ip} are subset of {Ij....I }. Then the apparent
dimensionality of a, D(a) = k+m. TFor the edge a<X,
§=k-(number of subscript in I_I;). For the edge 7«a,
§=-m. The evaluation of §(a<«X) and §(Y«a) dces not <ake
into consideration the declared dimensionality of X and VY,
respectively, but 1s derived only from the assertions.

To illustrate the above let

$

a: FI=2THEN Y = X(I);

—

D{(a)=1l, then 8§(a<«X) = 0 and &(Y<«a) =-

a: Y(I,J)=SUM(X(K,J),X);

D(a)=3, then §(a<«X)=1, §(Y¥<«a)=-1,

Por =dges of type P 8=0, except 1n the case of P tyre
edges SIZE.X«X §=1, as the SIZE.X array is always of one
dimension less than X.

The second step consists of repeated propagation of
the dimensions throughout the array graph both forward
and backward untll either consistency 1is attalined or an

error is indicated. Propagaticn means that the

number of dlimensions of the node at one end of an edge isdefined
as egual to the number »f dimensicns of *he node at the
other end plius (minus, if backward propagated) 8§, The

direction of the propagation depends on the type of the

—— _-_-M ‘I

edge, The repeated propagations may either:

follows. Let C{n) represent the current nunber of Iimensicns -

case a: converge—indicating consistency of dimen-
sionality.

case b: diverge—with increasing number of dimernsions of
a node with each repeated propagation, until a
oound is exceeded. This implies an error in di-
mensionality in some recursive assertion(s).

case c¢: the number of dimensions computed eXxceeds the
number of dimensions of a declared output
file. This implies an error elther in data
description or related assertions,

A simplified presentation of the algorithm 13 as

(RN

node n. 2(n) represents the initial (apparent) number of

dimensions of node n. Let N denote the set of nodes and

=
—~

l.

2-

the set of edges of the graph.
For all nodes neN let C(n)<«D(n)
Repeat propagation of all edges until either:
case a: there is nc change in C(n) for all neN,
or case b: any C(n), neN, exceeds a threshold (say 20)
(error message),
or case ¢: for any data node which 1s not an interim
variable or a fleld in a2 keyed lle,
C(n)>D(n) (error message),

Repeat for each edge eckE: sgp

56

Propagate Forward:

: (1) ~rfor H and D type edges,

(1i) for P edges . terminating in ENDFILE,
FOUND and NEXT prefixed data names,

(1iii) for P edges emanating from POINTER

prefixed data name 4
if C(p)+6>C(s) then let C(s)=C(p)+S$
Propagate Backward:
for P type edges emanating from END,
LENGTH and SIZE prefixed data name
if C(s)=8>C(p) then let C(p)=C(s)-6
3. Repeat for all neN
if n is an apex node of an interim
structure, including keyword orefixed
names, then generate statements that

add C(n) dimensions to the structure.

4, Let D(n)«C(n)

4,5 Filling Subscripts

- At this point a consistent number of dimensions for
t: each node (D, Table 2, item 4) has been determined. Also
all the missing data statements have been generated. There
remains the triple task of 1inserting:

1) entries for missing dimensions and subscripts in

the local subscript list of respective nodes

(see Table 3).

57

2) local subscripts in positions of missing sub-

scripts in assertions.

3) entries for missing subscripts in the subscript

lists of respective edges.

The additicon of subscripts in node structures 1s as
follows:

For data nodes the global form of subscripts FOR_
EACH.X is used (Table 3, item 3). The subscripts are in the]
order of precedence in the respective data tree. For
assertion nodes the local form of subscripts (S<n> or
SUB<n>) is used (Table 3, item 3). The subscripts asso-
ciated with an assertion node are ordered in accordance
with the dimensions of the target variable followed by

anv reduced subscripts.

Local subsceripts are inserted in the assertions,
Subscripts are added from right to left (31, 32, etc.),
until all the dimension positions are filled. For ex-
ample assertion ad in Figure 2:

TOTAL = SUM(QUANT(FOR.ZACH.INREC), FTOR_EACH.INREC)

. would be modified to:

TCTAL (S1)=SUM(QUANT(S1, TOR_EACH.INREC), FOR_EACH.INREC).
As TCTAL is one dimensional and QUANT is two dimensional,
S1 has been added to both on the left side.

Finally, edge subscript structures (Table 5) are added

: 3

to the edges emanating from the nodes where subscripts were

added.

T T T T

\ I B

58

4,5 Range Propagation

A range of a dimension of a node (data or assertion)
may be specified directly in statements associated with the
node or indirectly through range vropagation. There are
four ways to define a range of a dimension directly (see
item 3.2 in Table 2)

1) Fixed: through specifying an integer number of

repetitions of the respective data statement.

2) Variable: Through defining an array with the

SIZE or END prefix names and the node name as

suffix, T T

e e ¢ T

e
e et

3) Declared: through a data statement of a sub-

script name, including the number of repetitions.

4) Implicit: through end-of-file marker of a source

sequential file.

It would be cumbersome for the user to define the range
of each dimension of each node. Therefore, in the absence
of a range specification for a dimension of a variable, the
assertions where the variable is used are analyzed for im-

vlication of the range. For example, the assertion X(Im...Il
=¥(Ip...I;) may imply that the ranges of the dimensions in X

<

and Y referred to by the same subscript name are the same.

This is referred to as range opropagation. The range in this

case 1s defined indirectly through vpropagation of the range

from ancther data node. If a range is specified indirectly,

e

3

‘

then the node number where the resvective range is
defined directly is given in the node structure (as
shown in Table 2, item 3.3).
The Tunction ¢f the range propnagation ovrocess is to
etermine the range sets, namely the sets of nodes and
respective positions that have a common range definiticn.
Consider an edge e: s<«p. The correspondence of N .

respective dimensions in nodes p and s is given in the -

subscript entries assog;gged.with”fhéuédge e (see Table

X, .. .-533 ttem 1 and 2). For subscript expression of %yves
L 1,2 and 2 (I, I-1 or I-X, see Table 5, item 5) znd in the
absence of contradictory range specifications, the indi- 1

.
3
N cated corresponding subscripts in p and s are assumed %o

have the same range and be members of a corresponding

]
™

nge se%t., By reveated propagstions, a range set is de-~

termined, consisting of node-number and position-

number pairs which have only one common range specifi- %

catlon. Note that the range 1is not propagated where a

subscript expression is of type 4 (i.e. ccnstant or any

other form differing from tyves 1,2 and 3). If there are

. more than one same range specification Zor a rangs set

Y then the specificatiocns are redundant and all but one
could ve deleted or disregarded, and a warning messaze
issued. It there 1is no range sveciflication then an error

message 1s 1ssued.

I A

’!,“"K -+

ww

60

The examples in Figures 4 and 5 amply illustrate
range propagation. For example, in Figure 4 the
second dimension of INREC is specified directly by an
assertion defining END,INREC. This range 1is propagated

through H and D type edges to the second dimension of

p—————

ITEM#,UANT, al,-a2, alb; 'NEXT.INREC, NEXT.ITEM# and
ENb.INREC. Requiring the user to provide range specifi-
cations for all fthese nodes would have been unacceptably
tedlous.

The algorithm for performing the range propagatipn
follows:

1. Determine the nodes with direct range specifi-
cations: Place all node-dimensions where the range speci-
fication is direct on a 1list L.

2. Propagate range of dimensions: For each node in

r

L, the specified range 1s propagated forward “hrough

emanating series of edges and backward through the termin-
ating series of edges until the appropriate dimension is
found to be reduced or a conflicting directly specified
range 1ls encountered. The ncde number and dimension ;
numbter of each traversed node is entered into a range

set corresponding to the svecified range in the node in L.

[

In tracing the edges, I1f 2 traversed node is a data ncde
where the range-propagated dimension 1is declared as re-

ceating {(in the corresponding data statement) but the range

is defined indirectly, then the node number of the
starting node in L is entered in item 3.3, Table 2.
3. Issue error message: Determine all data nodes

where the rightmost dimension is defined as repeating

(item 3.3, Taple 2) and repoTs them as ﬁissing specifi-
cations of number of repetitions.

The V type edges are constructed while the virtual
dimensions ranges are prcragated. There would be a V
type edge in the reverse direction for each virtual

subscript asscciated with H or D type edges, and

Fy

or P

17 Wwww—y}rw '«w---.,_,,

vype edges emanating from a POINTER prefixed data names.

The subscript expression of tyve 2 (I-1) is associated

95
>

e

with the virtual subscriot of a V type edge (see Table

—

5, item 3) to denote precedence of the previous slesment.

w

(see item 3.1, Table 2) but the range is undefined I

5. FLOWCHART DESIGN

At this point in the compillation vrocess, the e

na

it

specification is assumed to be complete, nonamtigisus

consistent. The next step is_them to produce a flowchart

~

of the ac;}gnsaéﬁ“ﬁgwggken by the program. The flowchart E
— |

"”‘“"'Eé an intermediate, cbject language indevendent, skeletal

representation of the vrogram. Recall that the nodes of

the array graph represent accessing and computing actionsand

the edges indicate necessary precedence requirements

between actions represented by nodes. The flowchart is

essentially a linear arrangement of nodes according to

the partial order imposed by the edges. The final code-

generation phase of the processor (not described in

t

h

(=X

-
o2

naper) essentlally translates individual entries in

cr
;
®

flowchart into blocks of code in the obJect language
(presently PL/1 or Cobol),

There are two svecial interdevendent vroblems that
must e coped with In generating a flowchart. TFirst, the
array gravh may contain cycles which prevent ordering
the nodes 1In accordance with the edges. A maximally
strongly connected component (MSCC) results from cycles
in the array graph. Such cycles are illustrated in FTigures
b and 5. The 7 tyre edges speate an 4SCT =onsisting of all

the nodes that have a virtual Simension. T tyne edges

cursive assa2rtion a3 also create 272l23 in tha as»nmay swern

set of simultanous equations also forms a MSCZ.

T

Secondly, each node represents an array of data or
equaticns and 1t is necessary to assure that all the
2l2ments are individually accessed and svaluated. Con-

sider the simple example of a single ncde consisting of

A(Ie e I)=r(B(Ia0 . Iy dpe e J)

-]
'3
®

=

and 5 subscripts are distinct. Ia....Ib i3 a sub- '

ser of I7...In. Assume that Cond.Iz...Cond.Ip recognize

ements in the ran

ry

es =

o =27al.at

-

ast

<t
oy
4]

}_J

(V]

W

P Y .um.

(18]

w
[
[
ot

he elements of assertion a 1t may be bracketed by

fteration statements for all it's subscrir<z. The

. elements will then be evaluated wnile oprogressively %
7aryving the indices in eazh dimension from 1 5c the lass

e

F 2lement, as follows:

Y

<+

—_— “;;.. e

E
4 64
L
3
do I, while cond. I.; b
z 1 1
)
3 T . $ T . 5
do I while cond.Ln, 3
: do Jy while cond.J,; ‘
. do Jp while cond.Jm; i
]
2 a; |
i~
, :
1? end Ims
!
3 end Jl;
) end In;
end Il;
i
& E

On
Ut

Much of this section is concernad with analysis related to
the above twe problems.

The general approach to scheduling consists of crea-
ting a component grapvh which consists of all the MSCCs in
the array graph and the edges connecting the MSCCs. The

component graph 1s therefore an acyclic directad grach.

ot
9]
'O
O
2
O
4]
',1.
@]
o))
} 4
'.—J
S}
w
O
3
ct
(%
(o))
-
"3
(D
w
<
l_J
ct
i J
3
fusl
'_J
3
W
',_l
' e
]
®
joV]
Y3

It is %then
arrangement of the components which can be regarded as
a gross level representation of the flowchart. The sub-

scripts for each component are determined and aprrooriate

(=N

terations for these subscripts bracket the respective
components. Finally each compcnent 1s analyzed in greater
decth to determine a suitabls method for its evaluaticon.
We essentially employ two methods for scheduling the
evaluation of a MSCC. In the first metchoed an attempt is

made to decompose the MSCC by deleting anvronriate edges.

e

7]

Consider the simple example of a two node MSCC consisting

3

of a cne dimensional array X and the assertion a: X(I) =
X(I-l)+i.. I is a subcript common to both nodes 2and 1 is <he
range 27 I. here’zre the schedule would de:
do I from 1 to N

MSCC consisting of nodes a and X

end I

66

The edge a<«X has associated with 1t a subscript I of type
2 (I-1). It indicates that evaluation of the I-1 th ele-

ment of X must orecede the evaluation of the I th element.

P e =y

But this is already assured by the order of iterations for
I from 1 to N. Therefore this edge may be deleted, which

may cause decomposition of the MSCC and allow for 1ts

scheduling. More generally, to decompose a multi-node MSCC
it is necessary to:

1) Find a dimension and position in each node of the
MSCC which all have a common range that can bYe given
a corresponding common subscript name.to use in an
iteration statement that brackets the entire block
of nodes that constitutes the MSCC.

2) TFind edges that represent dependencies on lower in-
dex elements of the selected subscript; these edges
are deleted and may cause decomposition of the com-
penent.

For complex MSCCs the decomposition and scheduling may

be performed recursively until all the cycles are ovened,

If no sultable subscript is found or if no edge can be
deleted, then the user is advised of this and an iterative
solution method is employed, typically the Gauss Seidel
methed. For instance, consider an MSCC consisting of the
3calars X and Y and the two assertions X= a¥+b; Y=cX+d.

Jo decomposition of the MSCC is feasible iIn this casc

The processor therefore incorporates in the

orogram an iterative method to solve these eguations. The
user then must check the convergence of the solution. The
part cof the MODEL language for this task has been omitted
in this paper.

At the end of the scheduling process, an optimization
process further attempts to consolidate adjacent blocks
of nodes which are iterated over the same range. This in-
creases the scope of the iteration and improves the effi-
ciency of the resulting program.

The SCHEDULING procedure consists of two procedures,
SCHEDULE-GRAPH and SCHEDULE-COMPONENT, which are mutually
recursive,

SCHEDULE-GRAPH finds the MSCCs and topclogically sorts
the component graph. It is given two arguments: 1) +*he
graph to be scheduled (g), and 2) the level of the recur-
sive call (%) corresponding alsoc to the level of iteration
loop nesting. It returns a schedule of the nodes of the
graph, (s;....s.).

SCHEDULE-COMPONENT analyses and decomposes an MSCC.

It is given two arguments: 1) a MSCC (g;) to be decomposed
and 2) the level of recursion (2). It returns a block of
nodes bracketed by the iteration parameters and the level of
nesting of the iteration.

SCHEDULING is initiated by calling SCHEDULE-GRAPH

with the arguments: g, being the entire arrav graph,

- BT

68

and 2=0,
The algorithm of SCHEDULE_GRAPH is as follows:
1. Find all the MSCCs. This is done using the
Jepth first search algorithm (Tarjan, 1972).

2. Sort topologically tne MSCCs Into a linear order

3. Remove edges in g between gy and gj> ﬁ&, Juod=3.
This deletes the edges connecting MSCCs. Such edges are
not needed further.

4) Repeat for each gj, i=1 to m
sy = SCHED_COMPONENT(g;, 2).s; 1s the ith ecmronent (single
or multi node) in the fiowchart. This calls %the
SCHED_COMPONENT process for each component,

5) Return the flowchart sj...s_. This constitutes
the final result,

The algorithm of SCHED_COMPONENT is as follows.

1. Determine candidates for subscripts for bracket-
ing the combonent: the smallest set of available dimen-
sions in g; 1s determined. These are the dimensions of
a node in gy which has the smallest number of dimensions
which also have not been selected previously (for smaller
values of 2). Let the selected node be M. Let m= number
of available subscripts in M.

2) Return a single node as a schedule element: 1f

m=0 and the number of nodes in g.=1 then return g4 as a

schedule element, S84

3) Report a non-decomposable MSCC: 1if m=o (no availabliz
subscripts) and the number of nodes in g4>1 (i.2. a multi node
MSCC) then this is a non-decomposable cycle in the graph.

There are several possible causes of a non-decompcsable MSCC
as follows:

1) 4if the MSCC contains V type edges then this indicates
that it is not feasible to implement the user specifi-
cation of the corresponding virtual dimension. The
respective dimension must then be changed to a physical
dimension.

23 1if the MSCC contains at least one edge of types H,2 or
M, then there is a mathematical inconsistency caused bty
circular logle or incompatibility in dimensionality or

subscripting. This is considered a user error.

(@V]
~—

if all the edges in the MSCC are of D type, and the
number of assertion nodes in the MSCC eguals or ex-
ceeds the number of data nodes then the problem may
be due to simultanecus equations or because the de-
pendencies of elements of the arrays are not in des-
cending order of element index values. This then
suggests that an iterative solution, such as the
Gauss Seidel method, is called for. g4 is altered

to form a erapvh ccrrespvonding to such an itera-

tive solution procedure and ster 8 is executed next.

¥)

tive -solution procedure is beyvond the scope

of this paper (Zana, 1978). '%ssages are issued
identifying the nodes in the MSCC and the in-
dizat=d problem.

Select a common range (and subscript) for an
iteration to bracket the nodes in the MSCC:

Starting with M, repeatedly propagate the range

L]

or each of the available dimensions (similar

to the range propagation in Section 4) until a
chain of same range dimensions (a range set) is
found where the range 1s propagated to only one
dimension of every node in g;. Availlable dimen-
sions that do not satisfy this condition are

marked as not available.

Name the selected subscript: The highest order subscript
of M which satisfles the above criteria is

selected and a subscript name 1s associated with
it. The selected subscript is noted as un-
avallable. & selected subscript range must not
depend on yet unselected subscripts. Also

virtual subscripts of sequential files must be
selected in the order of dimension positions. An
error message 1s issued 1f these conditions are not

satisfied indicating an inconsistency in subscrip-

ting.

5) Remove edges: All edges of expression tyves
2 and 3 (I-1, I-X) of the selected subscript are

deleted from the MSCC gj.

-2

Enter the value of 2 and the selected subscript

—~
w
®
D

name in subscript entries oI fthe ncde

3
w
H
3
04

Table 3, item 8).
8) s; = SCHEDULE_GRAPH(g;, 2+1). This returns the
decompecsed MSCC for a recursion of scheduling.

9) Bracket the schedule returned by SCHEDULE _GRAPH!

The returned schedule consists of, one or several slements.

A block is formed by bracketing these elements within

o

an iteration for the selected subscript, i any.

10) Return the bracketed block as a schedule slement.

[¢)]

After obtaining a schedule for the array graph, the
further OPTIMIZATION procedure endeaveors progressively to

anlarge the

®

ope of lterations and thereby attain a more

[/]
(@]

2

'y

ficient preogram. The algorithm of OPTIMIZATION consists of

o
D

orogressively evaluating adjacent blocks in the schedule as
candidates for consolidation. The condition for consolida-
ting adjacent blocks A and B are:
1) The ranges of the 1terations that bracket the
blocks A and B are the same.
2) The dimensional positions of the same range di-

mensions in the indeéendent variables (rhs) of

-
n)

the nodes in A are the same as the dependent
variables (lhs) of the nodes in B. This con-
dition checks for instance that bleck B does not depend on a
transposed array which is defined in A, in which
case blocks A and B cannot be within the scove of
a single iteration for the respective subscripts,.

The above algorithms are illustrated in the flow-

charts in Figures & and 7 for the examples in Figures

4 and 5 respectively. The initial topological sorting of
the MSCCs in the grarh of Figure 4 by SCHEDULE_GRAPH re-
sults in the ordered list of 8 components. These com-
ponents are listed on the following lines of Figure 5:
1,2,3, a MSCC for =1: 1lines 5-25, 27, 28, 29, 30.
SCHEDULE_CCMPMNENT is then called for each of these com-
ponents. TFor the first three components, and later for the
last four, m=0 and therefore they are reported as schedule
2lements. The next component (shown in lines 5-25) is a
MSCC including all the V type edges for the virtual sub-
script FOR_EACH.INGRP. The global subscript FOR_EACH. =~ F
15 selected as an iteration parameter. The MSCC : oracke.ed

by iteration statements for FOR_EACH.INGRP and all the edges

BTSN

with subscript expressions of FOR_EACH.INGRP of types 2 and 3
are deleted. The V type edges for FOR_EACH.INGRP have a sub-
script expression of tyre 2 and are therefore deleted. SCHEDULE

CCMFGENT then calls SEHEDULE.GRAPH recursively to schedule the sub-

1 ITEM
2 ADDED NODE BELOW ITEM
3 IN
4 ITERATION: FOR_EACH.INGRP UNTIL END_OF_FILE.IN
) S IN.INGRP .
6 ITERATION: FOR_EACH.INREC UNTIL END.INREC
Msce -3 7 IN.ITENE
FOR_EACH.INREC g :‘: - QUANT
SELECTED 10 NEXT.IN.ITEME
11 a2
12 END.INREC
13 al .
14 END INTERATION: FOR_EACH.INREC
15 POINTER.ITEMREC
16 ITEMREC
17 ITEM.ITEME
18 a3
MScCe f=1 19 OUT.ITEMS
FOR EACH.INGRP 20 ADDED NODE ABOVE END.INREC
SELECTED 21 OUT.TOTAL
22 as
23 OUT.COST
24 OUTREC
Y 25 ADDED NODE ABOVE NEXT.IN.ITEME
26 END ITERATION: FOR_ZACH.INREC
27 ADDED NODE 2ND LEVEL ABOVII END.INREC
28 oOuUT
29 ADDED NODE ABOVI POINTEIR.INREC
30 ADDED NODE 2ND LEVEL ABOVE NEXT.IN.ITEME
Figure 6,

Flowchart Generated For The Example In Figure 2

) an g

T

1 N’
2 INREC
3 IN.N
4 as
5 OUT.N
) ITERATION: FOR_EACH.I UNTIL END.I
) - T ITERATION: FOR_EACH.J UNTIL END.J
) 8 a3
MSCC 2=2 9 J
FOR_EACH.J ig :i
SELECTED 12 END.J
v 13 _ a4
' 14 ERD OF ITERATION: FOR_EACH.J
MSCC =1 15 I
FOR_ZACH.I 16 END.I
\ SEIZCTED 17 NODE ADDED ABOVE END.J
- T 18 END OF ITERATION: FOR_EACH.I
19 INT
20 NODE ADDED ABOVE END.I
21 DIV
22 OUTREC
23 ouT .
24 NODE ADDED 2ND LEVEL ABOVE END.J.

Figure 7 TFlowchart Generatad For The Example In Tigure 3

- - m——
—

75
graph of the MSCC with the deleted sdges. SCHEDULE_GRAPH
topologically orders the components of the new subgrarh. H

; This results in 5 components shown on lines: 5, a MSCC
for 2=2 lines 8-13,15,16 and 17. SCHEDULE_GRAPH further

! calls SCHEDULE_COMPONENT for each of these components, now
with 2=2, TFor each iferation nesting lsvel there are
further recursive calls on SCHEDULE_GRAPH and SCHEDULE _
COMPONENT until all respective MSCCs are decomposed into

single node schedule elements.
o

A similar process would produce the flowchart 3of

Figure 7 based on the array graph of Figure 5.

5. CONCLUSION

3 As stated in the introduction, the goal of the MODEL
project has been the development of a noncrocedural language

system with the characteristics of 1) automatic handling

of all inpu%/output activities, 2) global checking of
completeness and consistency and 3) cemsilinsT “AS s3cwn,

*hese three characteristics are mutually supportive in
achieving a practical and useful sys*em.

This article is in a sense a progress report, although
the development has been underway for the past 5 years. The
presently described algorithms represent an approach to
a system that 1is tolerant of many *types of users' ambiguities,

incompletenesses and inconsistencies, and, at the same time,

[

xplicitly vreports the semantics of the interpretation of
*he program specification to the user.
The two features, speedier program development and global

logical checking, would make possible some new applications

£
-

@]

computers, especially where a large number of programs

v

re required quickly and inexpensively or where extensive
debugging based on running the programs i1s normally needed.
“We had some experience with the former situation in a prciect
where many business oriented programs had to be developed

and given %o xev companies so *ha< *hey could generate
formatted repor+s for the Internal Revenue Service based 2=n
their own diverse and private data bases (Prywes, 1977).

We are currently investigating a significantly different

application where the system would be used in online economic

77

forecasting (Gana, 1978). The concept in this case is that
global checking and correction of the specification would
reduce the amount of debugging presently being experienced in
economic modelling and foracasting and that very large models
(up To 20,000 equations) could be executed much more efficient-
ly than with the interpretive economic modelling systems. This
“ype of application requires extensions in three main areas,

»n which research is proceeding. These are: 1) numerical

'

solution of simultaneous equations, 2) extending the language
+o5 allow matrix algebra equations and, generally, operations
on high level data structures and 3) modularization 2f a MODEL
specification so that submodule programs may be independently
generated and executed in distributed computers.

Another area of research concerns cptimizaticn of
memorv _in the produced programs and, in particular, dezer-
mining automatically which dimensions may be considered virtual,

in =he sense of this article.

ACKNOWLEDGEMENT

Mr. Kang-Sen Lu has participated in the development
and testing of the version of the MODEL system which in-

il

corvorates the algorithms described in this article.

ERTTe

S SR,

¥
A
1

7. REFERENCES:

1. Ashcroft, E.A. and Wadge, W.W., "Lucid, A Nonprocedural
Language With Iteration,”" Communications of the ACM, :
Vol. 20, No. 7, July 1977, pp. 519-526.

2. Dennis, J.B., "First Version Of A Data Flow Procedure
Language ," MAC Technical Memorandum 81, M.I.T., Project
MAC, Cambridge, Mass., May 1975.

3. Deo, N. and Mateti, P., "On Algorithms For Enumerating
All Circuits of A Graph," SIAM Journal of Computing,
Vol. 5, No. 1, March 13975.

4, Gana, J.L., "Use and Extensicn of An Automatic Program
Generator For Model Building In Social and Engineering
Sciences," Ph.D. Dissertation In Computar and Information
Science, University of Pennsylvania, Philadelphia, Pa., 19104,

1978. -
5. Holt, A.W., "Introduction To Occurance Systems;" in

Associative Information Technigues, Jacks E.L., ed.,

Americal Ellservier, New York, 1971, pp. 175-202.
6. Johnson, D.B., "Finding All The Elementary Circuits 0f A

Directed Graph," SIAM Journal of Computing, Vol. 4, No. 1,
1375, pp. 77-8Y4,

7. Langefors, B., "Information System Design Computaticns
Using Generalized Matrix Algebra",BIT 5(2) 1965,

8. Leavenworth, B.M and Sammet, J.E., "Overview of Non-Pro-~
cedural Languages," Proceedings 0f The Symposium Cn Very
High Level Languages, SIGPLAN notices, ACM, April 197%4.

9. "MCDEL II - Automatic Program Generator, User Manual,"
Revision of Version 3, Contraect TIR-77-41, Cffice of
Planning and Research, Internal Revenue Service, Washington,
D.C., January 1978.

10. Nunamaker, J. ¥., "On The Design and Cptimization of
Information Processing Systems,"” Ph.D. Thesis in Operations
Research, Case Western Reserve University, Cleveland, Chio,

1969.

11. Petri, C.A., "Kommunikation Mit Automaten," Schriften des
FRheinisch - Westfalischen Institutes For Instrumentelle
Matematik an der Universitat Boon Hft. 2, Bonn 1962.

Lu and N. Prywes, "MODEL Prcgram Cenerator:
gramming Documentation", Technical Rencrt,

£ Electrical gng*nenring, Unlversity of
1380,

12. Pnuell, A., KX
System and Pr
Moore Schnool
Pennsylvania,

c
o)

80

REFERENCES (continued)

L Aadhid

13.

14,

Prywes, N., A, Pnueli and S. Shastry, "Use of a Non-
procedural Specification Language and Asscciated
Program Generator In Software Development," ACM Trans.
On Programming Languages and Systems, VYol. 1, No. 2,
October 1979, pp. 196-217.

Prywes, N., "Reference Manual For Use of MODEL I
IRS Tape Program”. Report to the Planning and Re
Division, Internal Revenue Service, Washington D
November 1377, —

Tesler, L.3., and Enea, H.J., "A Language Desigd T
Concurrent Processes", Proc. 3pring -JzITit Compu=zer
AFIPS Press, 1968, pp. 403-u33,

Shastxy ,~ 5., "Verification and Correction of !on-Procedural

‘Specification In Automatic Generation of Programs'", Ph.D.

Dissertation In Computer and Information Science,
University of Pennsylvania, Philadelphia, Pa., 19104,
1378,

Tarijan, R.E., "Depth First Search and Linear 7Zraph
Algorithm," SIAM Journal of Computing, Vol. 1, No. 2,
1972, pp. 140-160.

